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General framework : random experiments

Experiments & Randomness :

System/Système (general meaning)

on which one can do

Experiment/trial/expérience/tirage/épreuve

which produces

Outcome/résultat/éventualité/réalisation

unknown a priori

Event/événement = set of outcomes, which is interesting and
measurable

Usual working hypothesis :

only information = list Ω of outcomes and a measure of their
occurences via the measures of events.

sometimes, no precise information about Ω, work focused on a
reduced set of events of known measures.
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Formalisation

De�nition (espace probabilisé/de probabilités/probability space)

A probability space is a triplet (Ω,F ,P) where :

Ω set called univers/sample space

F set of subsets of Ω (the �events�)

P function from F to R

satisfying the following properties :

F tribu/σ-algèbre/σ-�eld :

Ω ∈F and ∀A ∈F , A ∈F

∀{An,n≥ 0} �nite or countable family from F , ∪n≥0An ∈F .

P probability measure :

P(Ω)= 1 and ∀A ∈F , 0≤P(A)≤ 1

for any �nite or countable union of events An ∈F pairwise

disjoint, P(∪nAn)=∑
nP(An).
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Vocabulary & �rst remarks

Vocabulary :

ω ∈Ω called outcome/réalisation.

A ∈F called event/événement.

ω is a realisation/réalise/realizes A if ω ∈A.
Almost sure event : A ∈F such that P(A)= 1

Negligible event : A ∈F such that P(A)= 0

Remarks :

Events of interest are usually de�ned in extenso (list of
elements ω) or by properties

Axioms ⇒ ;∈F and P(;)= 0

B you may encounter almost sure events (resp. negligible) di�erent
from Ω (resp. ;)
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Examples of probability spaces

Examples of σ-algebra ?

any Ω and F =P (Ω)

Borelian sets B(R) : smallest σ-algebra on R containing
open intervals.

Examples of probability measures ?

Case where P (Ω) with �nite or countable Ω : any
function from Ω to R+ whose sum over Ω is 1 can be
extended in a probability measure over P (Ω).

Case of borelian sets B(R) : Lebesgue measure (1901).

B Some borelian sets can not be obtained by a �nite
number of countable unions / intersections of open intervals.
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First properties

Proposition (complementary)

∀A ∈F , P(A)= 1−P(A)

Proposition (inclusion)

∀A,B ∈F , si A⊆B alors P(A)≤P(B)

Proposition (inclusion/exclusion)

∀A,B ∈F , P(A∪B)=P(A)+P(B)−P(A∩B)

Proposition (generalised inclusion/exclusion)

∀A1, . . . ,An ∈F , P(∪n
i=1Ai )=

∑
i P(Ai )−

∑
i<j P(Ai ∩Aj)+∑

i<j<k P(Ai ∩Aj ∩Ak)−·· ·+ (−1)n+1P(A1∩ . . .∩An)

M1IF - ENS Lyon Performance Evaluation & Networks 6/32



Probability spaces
Random variables

The classics

De�nitions & notations
First properties
Dependance / Indep / Conditional probabilities

First properties

Proposition (sub-additivity)

∀{An,n ∈N} family from F , P(∪n∈NAn)≤∑
n∈NP(An)

Proposition (continuity)

Let An, n≥ 0 be a sequence in F such that
A0 ⊆A1 ⊆ ·· · ⊆An ⊆An+1 ⊆ ·· · , let us denote A=∪n≥0An its limit,
we have P(A)= limn→+∞P(An).

Proposition (law of total probabilities)

Let A ∈F and {Bn,n≥ 0} a �nite or countable family from F which
partitions Ω, then P(A)=∑

n≥0P(A∩Bn).
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Dependance between events

De�nition (conditional probabilities)

Let A,B ∈F with P(B)> 0, the probability of A knowing/given B

is de�ned by P(A|B) def= P(A∩B)
P(B) .

De�nition (independance of evenments)

A,B ∈F are independent if P(A∩B)=P(A)P(B)
{An,n ∈N} is a family of independent events of F if for all
I ⊆N �nite, P(∩i∈IAi )=

∏
i∈I P(Ai ).

Proposition (law of total probabilities, conditional version)

Let A ∈F and {Bn,n≥ 0} be a �nite or countable family �nie of F

which partitions Ω, then P(A)=∑
n≥0P(A|Bn)P(Bn), with the

convention that if P(Bn)= 0, the corresponding term is 0.
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Random variables (r.v.)

De�nition (general r.v.)

A random variable with values in E is a function X from Ω to E ,
where (Ω,F ,P) is a probability space and E is equipped with the
σ-algebra B, such that ∀B ∈B,

{X ∈B}
def= {ω ∈Ω|X (ω) ∈B} =X−1(B) ∈F .

De�nition (real r.v.)

A real random variable is a r.v. X from Ω to R equipped with
borelians, that is ∀x ∈R,
{X ≤ x}

def= {ω ∈Ω|X (ω)≤ x} =X−1(]−∞,x ]) ∈F .
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Fonction de répartition / cumulative distribution function

De�nition (cumulative distribution function of a real r.v.)

The cumulative distribution function for the r.v. X is the function
Fx from R to [0,1] de�ned by FX (x)=P(X ≤ x).

Proposition (regularity of cumulative distrib. functions for real r.v.)

F cumulative distribution function if and only if :

limx→−∞F (x)= 0, limx→+∞F (x)= 1,

F non decreasing,

F right continuous (∀x ∈R, limh→0,h>0F (x +h)=F (x)).

Connaissance de FX → P(X > x), P(a<X ≤ b), P(X = x), ...
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Discrete / continuous real random variable

De�nition (discrete real r.v.)

A real r.v. X is called discrete if it gets its values from a �nite or
countable set {xn,n≥ 0} in R. The function f (x)=P(X = x) is
called mass/law/distribution (discret).

De�nition (continuous real r.v.)

A real r.v. X is called continuous if its cumulative distrib function F
satisties F (x)= ∫ x

−∞ f (u)du where f from R dans [0,+∞[ is
integrable, f is called density/loi/distribution (continuous).

Remarques : Let X a real r.v.,

If X discrete, f (x)=P(X = x) fully characterizes F .

If X continuous, F is continuous and ∀x ∈R, P(X = x)= 0.

There exists other types of real r.v. (singular, some mixes ...)
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Discrete / continuous real random variable

Proposition (usual utilisation of laws)

Let X real r.v. discrete/continuous of mass/density f , then for any
borelian B of R,

P(X ∈B)=∑
x∈B f (x) in the discrete case,

P(X ∈B)= ∫
x∈B f (x)dx in the continuous case.

Remark : those formulas also apply to random vectors
X = (X1, . . . ,Xn) with B borelian of Rn, by putting multiple
sums/integrals (cf next slides about random vectors).
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Random vector & joint distribution

De�nition (cumulative distribution fct of a random vector)

Let X1, . . . ,Xn be real r.v. over the same set Ω, the cumulative
distrib fct of vector X = (X1, . . . ,Xn) is de�ned from Rn to R by

F (x1, . . . ,xn)
def= P(X1 ≤ x1, . . . ,Xn ≤ xn).

De�nition (discrete joint distribution)

If X takes a �nite or countable nb of values, F is characterized by

its joint distribution f (x1, . . . ,xn)
def= P(X1 = x1, . . . ,Xn = xn).

De�nition (continuous joint distribution)

The r.v. X1, . . . ,Xn are said conjointly continuous if it exists f from
Rn to R, integrable and called joint distribution, such that
F (x1, . . . ,xn)=

∫ x1
u1=−∞ · · ·∫ xn

un=−∞ f (u1, . . . ,un)du1 . . .dun.
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Independence of r.v.

De�nition (independence of r.v.)

X1, . . . ,Xn real r.v. over the same Ω are said independent if the
cumulative distrib fct of the vector satis�es ∀x1, . . . ,xn,
F (x1, . . . ,xn)=FX1

(x1) · · ·FXn
(xn) with the marginal distrib

FXi
(xi )

def= P(Xi ≤ xi )=F (∞, . . . ,xi , . . . ,∞).

Proposition (independence for discrete/continuous cases)

X1, . . . ,Xn real discrete/continuous r.v. over the same Ω with
masses/densities f1, . . . , fn are independent i� ∀x1, . . . ,xn, the joint
distribution satis�es f (x1, . . . ,xn)= f1(x1) · · · fn(xn)
(at pts where F(X1,...,Xn) di�erentiable in the continuous case).
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Espérance / moyenne / expectation / mean

De�nition (expectation of a discrete real r.v.)

The expectation of a discrete real r.v. X of mass f is

E(X )
def= ∑

x∈R xf (x)
(�nite or countable nb �ni of non null terms) on condition that this
sum is absolutely convergent (i.e.

∑
x∈R |xf (x)| < +∞).

De�nition (expectation of a continuous real r.v.)

The expectation of a continuous real r.v. X of density f is

E(X )
def= ∫ +∞

−∞ xf (x)dx
on condition that this integral is Lebesgue integrable (i.e.∫ +∞
−∞ |xf (x)|dx <+∞).
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Expectation & composition of functions

Proposition (composition for discrete real r.v.)

Let X discrete r.v. of mass f , and g function from R to R, then
Y = g(X ) is a discrete real r.v. and E(g(X ))=∑

x g(x)f (x), on
condition that this sum is absolutely convergent.

Proposition (composition for continuous real r.v.)

Let X continuous r.v. of density f , and g function from R to R such
that Y = g(X ) is a continuous r.v., then E(g(X ))= ∫

x g(x)f (x)dx ,
on condition that it is Lebesgue integrable.

Useful formulas to compute E(Y ) without knowing the discrete or
continuous law fY of Y (�Law of the Unconscious Statistician�)
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Expectation & composition for random vectors

Proposition (composition for discrete joint distribution)

Let X = (X1, . . . ,Xn) r.v. of discrete joint distrib f , and g function
from Rn to R, then Y = g(X ) is a discrete r.v. and
E(g(X ))=∑

x1 · · ·
∑

xn g(x1, . . . ,xn)f (x1, . . . ,xn), on condition that
this sum is absolutely convergent.

Proposition (composition for continuous joint distribution)

Let X = (X1, . . . ,Xn) r.v. of continuous joint distrib f , and g
function from Rn to R such that Y = g(X ) is a continuous r.v.,
then E(g(X ))= ∫

x1
· · ·∫xn g(x1, . . . ,xn)f (x1, . . . ,xn)dx1 · · ·dxn, on

condition that it is Lebesgue integrable.

Simple extension of the case of real random variables (same proofs).
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First properties of expectation/mean

Lemma (�telescope�)

Let X real r.v.,

If X discrete with values in N, E(X )=∑+∞
x=0P(X > x).

If X continuous of null density over R∗−,
E(X )= ∫ +∞

x=0 P(X > x)dx .

Proposition (monotony/linearity/constants/decorrelation)

Let X ,Y real r.v. discrete or continuous,

If X ≥ 0, E(X )≥ 0.

If a,b ∈R, E(aX +bY )= a E(X )+b E(Y ),

E(1Ω)= 1,

X ,Y independent ⇒ E(XY )= E(X )E(Y ) (decorrelated r.v.)
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Moments of a real r.v.

De�nitions & vocabulary : let X real r.v. and an integer k ≥ 1

Moment of order k of X : mk(X )
def= E(X k).

Centered moment of order k of X : σk(X )
def= E((X −E(X ))k).

Variance of X : var(X )
def= σ2(X ) (�dispersion� around the

mean).

Ecart-type/standard deviation of X :
√
var(X ) (often denoted

σ).

Proposition (properties of variance)

var(X )= E(X 2)−E(X )2.

var(aX +b)= a2var(X ).

X and Y independent ⇒ var(X +Y )= var(X )+var(Y ).
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Events seen as r.v.

Proposition (event → real r.v.)

If A is an event, then its indicator function 1A is a real r.v. such
that E(1A)=P(A).

A useful translation :

one can work on events by computing some expectations

compatibility between useful de�nitions like independence

transfer of results from r.v. to events
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Generating functions associated with a real r.v.

De�nition (Generating functions associated with a real r.v.)

Let X a real r.v., one can de�ne the next series :

probabilities GX (s)
def= E(sX )

à valeurs=
dans N

∑
nP(X = n)sn

moments MX (t)
def= E(etX )

si <+∞=
autour de 0

∑
n
E(X n)
n! tn

characteristic ΦX (t)
def= E(e itX )

à valeurs=
dans N

∑
nP(X = n)e itn

Useful tool both from math and algo points of view.
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Generating functions : properties

Proposition (characterization of a law via series)

Let X ,Y real r.v. discrete or continuous, X and Y have the same
law i� their characteristic series satis�es ΦX (t)=ΦY (t) (thanks to
Fourier transformation).

B also true with moments series if �nite around 0, otherwise there
exists examples where FX 6=FY although ∀k ≥ 1, mk(X )=mk(Y )
(cf. log-normal laws).

Proposition (series for sums of independent r.v.)

Let X ,Y real r.v. over the same Ω and independent, then the series
associated with the sum satisfy GX+Y (s)=GX (s)GY (s),
MX+Y (t)=MX (t)MY (t), ΦX+Y (t)=ΦX (t)ΦY (t).
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De�nition

Let X discrete real r.v., it is said :

uniform if P(X = i)= 1/n for 1≤ i ≤ n

Bernoulli if X =
{
1 with proba p

0 with proba 1−p

binomial if P(X = i)= (n
i

)
pi (1−p)n−i for 0≤ i ≤ n

geometric if P(X = i)= p(1−p)i−1 for i ≥ 1

Poisson if P(X = i)= e−λλi/i ! for i ≥ 0
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Classical continuous laws

De�nition

Let X continuous real r.v. of density f , it is said :

uniform if f (x)= 1/(b−a) for a≤ x ≤ b

exponential if f (x)=λe−λx for x ≥ 0

normal if f (x)= 1p
2πσ2

exp(− (x−µ)2
2σ2 ) over R (denoted

N (µ,σ2))

log-normal if f (x)= 1

x
p
2π
exp(− (logx)2

2
) for x > 0
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An art of inequalities (I)

Proposition (large deviations : an inequality about distribution tails)

Let h function from R to R+ such that h(X ) remains a real r.v.,

then for all a> 0, P(h(X )≥ a)≤ E(h(X ))
a .

Corollary (Markov inequality)

For all a> 0, P(X ≥ a)≤ E|X |
a .

Corollary (Bienaymé-Tchebychev inequality)

For all a> 0, P(|X −E(X )| ≥ a)≤ var(X )
a2

.
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An art of inequalities (II)

Proposition (Jensen inequality)

Let h convex function from R to R and X real r.v. with E(X )<+∞,
then E(h(X ))≥ h(E(X )).

Proposition (Hölder inequality)

Let p,q ≥ 1 real nbs such that 1

p + 1

q = 1, then

E|XY | ≤ (E|X p|)1/p(E|X q|)1/q.

Proposition (Minkowski inequality)

Let p ≥ 1 real nb, then [E(|X +Y |p)]1/p ≤ (E|X p|)1/p+ (E|Y p|)1/p.

M1IF - ENS Lyon Performance Evaluation & Networks 26/32



Probability spaces
Random variables

The classics

Typical laws
Inequalities
Convergence

An art of inequalities (III)

Proposition (Cherno� inequality)

Let X1, . . . ,Xn independent real r.v. with values in {0,1}, let
X =∑n

i=1Xi and µ= E(X ), then for all δ> 0,

P(X > (1+δ)µ)≤ ( eδ

(1+δ)(1+δ)
)µ

Proposition (Hoe�ding inequality)

Let X1, . . . ,Xn independent real v.a. a.s bounded with
P(Xi ∈ [ai ,bi ])= 1 for 1≤ i ≤ n, i.e. X = (

∑n
i=1Xi )/n their empirical

mean, then
P(|X −E(X )| ≥ t)≤ 2exp

(− 2t2n2∑n
i=1(bi−ai )2

)
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Convergence modes

Let (Xn)n∈N,X real r.v. on the same probability space (Ω,F ,P),

De�nition (convergence in law / in distribution)

Xn
loi/D−→
n→+∞X if ∀x pt of continuity of FX , FXn

(x) −→
n→+∞FX (x).

De�nition (convergence in proba)

Xn
P−→

n→+∞X if ∀ε> 0, P(|Xn−X | > ε) −→
n→+∞ 0.

De�nition (convergence almost sure)

Xn
p.s ./a.s .−→
n→+∞ X if P({ω ∈Ω|Xn(ω) −→

n→+∞X (ω)})= 1.

Remark : �same proba space� not necessary for conv. in law
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Comparison of convergences

Theorem (comparison of convergence modes)

Let (Xn)n∈N,X real r.v. on the same proba space (Ω,F ,P),

then : Xn
p.s .−→X ⇒ Xn

P−→X ⇒ Xn
D−→X .

Beware of traps :

B Xn
p.s .−→X 6⇐ Xn

P−→X 6⇐ Xn
D−→X

B Xn
D−→X 6⇒ Xn−X

D−→ 0

B Xn
p.s .−→X 6⇒ E(Xn)−→ E(X )

A tip of integration :
� Xn ≥ 0 a.s. and Xn ≤Xn+1 a.s. ⇒ E(Xn)−→ E(X )
� ∀n, |Xn| ≤Y a.s. and E|Y | <∞ ⇒ E(Xn)−→ E(X )

M1IF - ENS Lyon Performance Evaluation & Networks 29/32



Probability spaces
Random variables

The classics

Typical laws
Inequalities
Convergence

Convergences & recurrent events

Notation : let (An)n∈N a sequence of events,

{An ∞ often}
def= {ω ∈Ω|ω ∈An for ∞ many An} = with ∪ and ∩ ?

Theorem (CNS of convergence a.s.)

Xn
p.s .−→X i� ∀ε> 0, P(|Xn−X | ≥ ε ∞ often)= 0.

Theorem (Borel-Cantelli)

Let (An)n∈N a sequence of events,

If
∑

nP(An)<∞, then P(An ∞ often)= 0.

If
∑

nP(An)=∞ and An independent, then P(An ∞ often)= 1.
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Convergences & recurrent events

Notation : let (An)n∈N a sequence of events,

{An ∞ often}
def= {ω ∈Ω|ω ∈An for ∞ many An} = ∩k≥0∪n≥k An.

Theorem (CNS of convergence a.s.)

Xn
p.s .−→X i� ∀ε> 0, P(|Xn−X | ≥ ε ∞ often)= 0.

Theorem (Borel-Cantelli)

Let (An)n∈N a sequence of events,

If
∑
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Limit theorems

(Xn)n≥1 i.i.d. r.v.= de�ned on the same probability space,
independent, identically distributed (same law).

Empirical mean Xn
def= 1

n (X1+·· ·+Xn).

Theorem (weak law of large numbers, simple proof when σ2 <∞)

Let (Xn)n≥1 i.i.d. where µ= E(X1) �nite, then Xn
P−→µ.

Theorem (strong law of large numbers, simple proof when σ4 <∞)

Let (Xn)n≥1 i.i.d. where µ= E(X1) �nite, then Xn
p.s .−→µ.

Theorem (central limite theorem)

Let (Xn)n≥1 i.i.d. where µ= E(X1) and σ2 = var(X1) �nite, thenp
n
σ (Xn−µ) D−→N (0,1).
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Illustrations of convergence modes

Vocabulary : stochastic process : evolution of r.v. formalised by a
sequence (Xt)t∈N ou R+ , of r.v. over the same space (Ω,F ,P) → a
trajectory/réalisation : the sequence (Xt(ω))t for a �xed ω ∈Ω.

cv in law

global repartition of trajectories
becomes invariant

cv a.s.

each trajectory converges
individually (a.s.)
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