Performance Evaluation and Networks

Refresher course in Probability
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Definitions & notations
First properties
Dependance / Indep / Conditional probabilities

Probability spaces

General framework : random experiments

Experiments & Randomness :

System/Systéme (general meaning)
Experiment/trial/expérience/tirage/épreuve
Outcome/résultat/éventualité/réalisation

Event/événement = set of outcomes, which is interesting and
measurable

Usual working hypothesis :

@ only information = list Q of outcomes and a measure of their
occurences via the measures of events.

@ sometimes, no precise information about Q, work focused on a
reduced set of events of known measures.
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Definitions & notations
First properties
Dependance / Indep / Conditional probabilities

Probability spaces

General framework : random experiments

Experiments & Randomness :

System/Systéme (general meaning) on which one can do
Experiment/trial /expérience/tirage/épreuve which produces

Outcome/résultat/éventualité/réalisation unknown a priori

Event/événement = set of outcomes, which is interesting and
measurable

Usual working hypothesis :

@ only information = list Q of outcomes and a measure of their
occurences via the measures of events.

@ sometimes, no precise information about Q, work focused on a
reduced set of events of known measures.
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Definitions & notations
First properties
Dependance / Indep / Conditional probabilities

Probability spaces

Formalisation

Definition (espace probabilisé/de probabilités/probability space)
A probability space is a triplet (Q,%,P) where :

o Q set called univers/sample space

o F set of subsets of Q (the “events”)

e P function from & to R

satisfying the following properties :
o Z tribu/o-algébre/o-field :
o QeZF and VAe F, Ac F
o V{A,,n=0} finite or countable family from &, U,>0A, € &.
@ [P probability measure :
o P(Q)=1and VAe ZF, 0=sP(A) =<1
o for any finite or countable union of events A, € & pairwise
disjoint, P(U,Ap) =X, P(Ap).
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Definitions & notations
First properties
Dependance / Indep / Conditional probabilities

Probability spaces

Vocabulary & first remarks

Vocabulary :
w € Q called outcome/réalisation.

A€ Z called event/événement.

Almost sure event : Ae & such that P(A) =1
Negligible event : Ae & such that P(A)=0
Remarks :

°
°
e w is a realisation/réalise/realizes A if w € A.
°
°

@ Events of interest are usually defined in extenso (list of
elements w) or by properties

o Axioms = ¢ €% and P(g) =0

A\ you may encounter almost sure events (resp. negligible) different
from Q (resp. @)
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Definitions & notations
First properties
Dependance / Indep / Conditional probabilities

Probability spaces

Examples of probability spaces

Examples of o-algebra?

Examples of probability measures?
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Definitions & notations
First properties
Dependance / Indep / Conditional probabilities

Probability spaces

Examples of probability spaces

Examples of o-algebra :
e any Q and F =2(Q)

o Borelian sets (R) : smallest o-algebra on R containing open
intervals.

Examples of probability measures :

o Case where 22(Q) with finite or countable Q : any function
from Q to R, whose sum over Q is 1 can be extended in a
probability measure over 22(Q).

o Case of borelian sets B(R) : Lebesgue measure (1901).

A\ Some borelian sets can not be obtained by a finite number of
countable unions / intersections of open intervals.
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Definitions & notations
First properties
Dependance / Indep / Conditional probabilities

Probability spaces

First properties

Proposition (complementary)

VAeZ, P(A)=1-P(A)

Proposition (inclusion)
VA BeZ, si Ac B alors P(A) <P(B)

Proposition (inclusion/exclusion)
VA BeZ, P(AuB)=P(A)+P(B)-P(AnB)

Proposition (generalised inclusion /exclusion)

VAy,..,AneZ, [FD(U?:lA,') = Z,‘[FD(A,') _Zi<j [P’(A,' ﬂAj) +
Yicj<kP(AiNAjnAL) =+ (-1)"™P(A1n...n Ap)
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Definitions & notations
First properties
Dependance / Indep / Conditional probabilities

Probability spaces

First properties

Proposition (sub-additivity)
V{Ap, neN} family from &, P(UpenAn) < X nenP(An)

Proposition (continuity)

Let Ap, n=0 be a sequence in & such that
Ay A1 -CA,CApy1 S+, let us denote A= Ups0A, its limit,
we have P(A) = limp_0oP(An).

\

Proposition (law of total probabilities)

Let Ae &F and {B,,n=0} a finite or countable family from & which
partitions Q, then P(A) =Y. =0 P(AN B,).

A\
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Definitions & notations
First properties
Dependance / Indep / Conditional probabilities

Probability spaces

Dependance between events

Definition (conditional probabilities)

Let A, B e Z with P(B) >0, the probability of A knowing/given B

is defined by P(A|B) E Pgl’/(\gf)g)'

Definition (independance of evenments)
o A BeZ are independent if P(AnB) =P(A)P(B)

@ {Ap,,neN} is a family of independent events of & if for all
I =N finite, P(H;E/A,‘) =Tes [FD(A,').

Proposition (law of total probabilities, conditional version)
Let Ae & and {B,,n=0} be a finite or countable family finie of &
which partitions Q, then P(A) =Y ,=0P(AIB,)P(B,), with the

convention that if P(B,) =0, the corresponding term is 0.
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r.v. general / real / discrete / continuous
Joint distributions / dependence
Expectation / moments

Generating series / functions

Random variables

Random variables (r.v.)

Definition (general r.v.)

A random variable with values in E is a function X from Q to E,
where (Q,Z,P) is a probability space and E is equipped with the
o-algebra &, such that VB e %,

def

XeBIT{weQlX(w)eBi=X"1(B)eZ.

A\

Definition (real r.v.)

A real random variable is a r.v. X from Q to R equipped with

borelians, that is Vx € R,
def

X<=x S weQX(w)=x}=X"1(]-00,x]) € £.
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r.v. general / real / discrete / continuous
Joint distributions / dependence
Expectation / moments

Generating series / functions

Random variables

Fonction de répartition / cumulative distribution function

Definition (cumulative distribution function of a real r.v.)

The cumulative distribution function for the r.v. X is the function
Fy from R to [0,1] defined by Fx(x)=P(X < x).

Proposition (regularity of cumulative distrib. functions for real r.v.)

F cumulative distribution function if and only if :
0 limy—._oo F(x)=0, limy_ioo F(x) =1,
e F non decreasing,
o F right continuous (Vx €R, limp_q pso F(x+h) = F(x)).

Connaissance de Fx — P(X >x), P(a< X <b), P(X =x), ...
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r.v. general / real / discrete / continuous
Joint distributions / dependence
Expectation / moments

Generating series / functions

Random variables

Discrete / continuous real random variable

Definition (discrete real r.v.)

A real r.v. X is called discrete if it gets its values from a finite or
countable set {x,,n=0} in R. The function f(x)=P(X =x) is
called mass/law/distribution (discret).

A\

Definition (continuous real r.v.)

A real r.v. X is called continuous if its cumulative distrib function F
satisties F(x) = [ f(u)du where f from R dans [0, +oo[ is

integrable, f is called density/loi/distribution (continuous).

\

Remarques : Let X a real r.v,,
o If X discrete, f(x)=P(X =x) fully characterizes F.
e If X continuous, F is continuous and VxeR, P(X =x) =0.
@ There exists other types of real r.v. (singular, some mixes ...)
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r.v. general / real / discrete / continuous
Joint distributions / dependence
Expectation / moments

Generating series / functions

Random variables

Discrete / continuous real random variable

Proposition (usual utilisation of laws)

Let X real r.v. discrete/continuous of mass/density f, then for any
borelian B of R,

o P(X€B)=XY pf(x) in the discrete case,
e P(XeB)=/

e f(x)dx in the continuous case.

Remark : those formulas also apply to random vectors
X =(Xi,...,Xn) with B borelian of R”, by putting multiple
sums/integrals (cf next slides about random vectors).
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r.v. general / real / discrete / continuous
Joint distributions / dependence
Expectation / moments

Generating series / functions

Random variables

Random vector & joint distribution

Definition (cumulative distribution fct of a random vector)

Let Xi,..., X, be real r.v. over the same set Q, the cumulative
distrib fct of vector X = (Xi,..., X;) is defined from R"” to R by

def

F(x1,...,xn) = P(X1 = x1,...,Xn < Xn).

Definition (discrete joint distribution)

If X takes a finite or countable nb of values, F is characterized by
its joint distribution f(xi,...,x,) déf[F"(Xl =X1,..0,Xn = Xn)-

Definition (continuous joint distribution)

The r.v. Xi,...,X, are said conjointly continuous if it exists f from
R" to R, integrable and called joint distribution, such that
F(xty.eorxn) = [02 e f(uy,...,up)duy...du,.

Uy =—00 Up,=—00
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r.v. general / real / discrete / continuous
Joint distributions / dependence
Expectation / moments

Generating series / functions

Random variables

Independence of r.v.

Definition (independence of r.v.)

Xi,...,Xp real r.v. over the same Q are said independent if the
cumulative distrib fct of the vector satisfies Vxi,...,Xn,
F(x1,...,xn) = Fx,(x1) - Fx, (xn) with the marginal distrib

def

FX,-(Xi) = P(X; SX,') = F(OO,...,X,',...,OO).

Proposition (independence for discrete/continuous cases)

Xi,...,Xn real discrete/continuous r.v. over the same Q with
masses/densities fi,...,f, are independent iff Vxy,...,x,, the joint
distribution satisfies f(x1,...,xn) = f(x1) - fn(xn)

(at pts where Fx, . x,) differentiable in the continuous case).
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r.v. general / real / discrete / continuous
Joint distributions / dependence
Expectation / moments

Generating series / functions

Random variables

Espérance / moyenne / expectation / mean

Definition (expectation of a discrete real r.v.)

The expectation of a discrete real r.v. X of mass f is

[E(X) déf ZXERXf(X)
(finite or countable nb fini of non null terms) on condition that this
sum is absolutely convergent (i.e. ¥ yep Ixf(x)| < +00).

\

Definition (expectation of a continuous real r.v.)

The expectation of a continuous real r.v. X of density f is
E(X) = [+ xf(x)dx

on condition that this integral is Lebesgue integrable (i.e.

[ xf (x)ldx < +00).

—00
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r.v. general / real / discrete / continuous
Joint distributions / dependence
Expectation / moments

Generating series / functions

Random variables

Expectation & composition of functions

Proposition (composition for discrete real r.v.)

Let X discrete r.v. of mass f, and g function from R to R, then
Y =g(X) is a discrete real r.v. and E(g(X)) =X xg(x)f(x), on
condition that this sum is absolutely convergent.

Proposition (composition for continuous real r.v.)

Let X continuous r.v. of density f, and g function from R to IR such
that Y = g(X) is a continuous r.v., then E(g(X)) = [, g(x)f
on condition that it is Lebesgue lntegrable.

Useful formulas to compute E(Y) without knowing the discrete or
continuous law fy of Y (“Law of the Unconscious Statistician”)
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r.v. general / real / discrete / continuous
Joint distributions / dependence
Expectation / moments

Generating series / functions

Random variables

Expectation & composition for random vectors

Proposition (composition for discrete joint distribution)

Let X =(Xi,...,Xn) r.v. of discrete joint distrib f, and g function
from R" to R, then Y = g(X) is a discrete r.v. and

E(g(X)) =X Xx,&(Xt,...,.Xn)f(X1,...,Xn), on condition that
this sum is absolutely convergent.

Proposition (composition for continuous joint distribution)

Let X =(Xi,...,Xpn) r.v. of continuous joint distrib f, and g
function from R" to R such that Y = g(X) is a continuous r.v.,

then E(g(X)) = [, -+ Jx, 8031, xn)f (X1, xp)dxa -+ - dxy, 0N
condition that it is Lebesgue integrable.

Simple extension of the case of real random variables (same proofs).
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r.v. general / real / discrete / continuous
Joint distributions / dependence
Expectation / moments

Random variables

Generating series / functions

First properties of expectation/mean

Lemma (“telescope”)
Let X real r.v.,
o If X discrete with values in N, E(X) = Y2 P(X > x).

e If X continuous of null density over R*,
E(X) = [ P(X > x)dx.

Proposition (monotony/linearity /constants/decorrelation)

Let X,Y real r.v. discrete or continuous,
e If X =0, E(X)=0.
o Ifa,beR, E(aX+bY)=aE(X)+bE(Y),
e E(1g) =1,
o X,Y independent = E(XY)=E(X)E(Y) (decorrelated r.v.)
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r.v. general / real / discrete / continuous
Joint distributions / dependence
Expectation / moments

Generating series / functions

Random variables

Moments of a real r.v.

Definitions & vocabulary : let X real r.v. and an integer k=1
o Moment of order k of X : my(X) £ E(XF).
o Centered moment of order k of X : o (X) = E((X —E(X))¥).

o Variance of X : var(X) = g,(X) (“dispersion” around the
mean).

o Ecart-type/standard deviation of X : /var(X) (often denoted
o).

Proposition (properties of variance)

o var(X)=E(X?)-E(X)>.
o var(aX +b) = a®var(X).
e X and Y independent = var(X +Y)=var(X)+var(Y).
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r.v. general / real / discrete / continuous
Joint distributions / dependence
Expectation / moments

Generating series / functions

Random variables

Events seen as r.v.

Proposition (event — real r.v.)

If A is an event, then its indicator function 14 is a real r.v. such
that E(1a4) =P(A).

A useful translation :
@ one can work on events by computing some expectations
@ compatibility between useful definitions like independence

@ transfer of results from r.v. to events
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r.v. general / real / discrete / continuous
Joint distributions / dependence
Expectation / moments

Generating series / functions

Random variables

Generating functions associated with a real r.v.

Definition (Generating functions associated with a real r.v.)

Let X a real r.v., one can define the next series :
o probabilities Gx(s) %' E(s X)a“'e““znu»(x n)s"

. E(X"
o moments My (t) = E(e tX)a;'o}::Ozn (X7)
o characteristic ®x(t) = E(e "fX)édvazle‘;S Y aP(X =n)e'"
ans

Useful tool both from math and algo points of view.
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r.v. general / real / discrete / continuous
Joint distributions / dependence
Expectation / moments

Generating series / functions

Random variables

Generating functions : properties

Proposition (characterization of a law via series)

Let X,Y real r.v. discrete or continuous, X and Y have the same
law iff their characteristic series satisfies ®x(t) = ®y(t) (thanks to
Fourier transformation).

A also true with moments series if finite around 0, otherwise there
exists examples where Fx # Fy although Yk =1, mi(X)=my(Y)
(cf. log-normal laws).

Proposition (series for sums of independent r.v.)

Let X,Y real r.v. over the same Q and independent, then the series
associated with the sum satisfy Gx.y(s) = Gx(s)Gy(s),
MX+y(t) = Mx(t)/\/’y(t), (DX+y(t) = (Dx(t)q)y(t).
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Typical laws
Inequalities
Convergence

The classics

Classical discrete laws

Let X discrete real r.v., it is said :
e uniform if P(X=i)=1/nfor 1<i<n
1 with proba p

@ Bernoulli if X = )
0 with proba 1-p

o binomial if P(X =i)=(7)p'(L-p)" " for 0=i=<n
o geometric if P(X =) =p(1-p)~! for i=1
o Poisson if P(X =i)=e *A/il for i=0
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Typical laws
Inequalities
Convergence

The classics

Classical continuous laws

Let X continuous real r.v. of density f, it is said :
@ uniform if f(x)=1/(b—a) forasx<b
o exponential if f(x)=7Ae™* for x=0

exp(—(x_”)z) over R (denoted
2 202

e normal if f(x) = \/2in
N (p,0%))

. i = 1 oyp(—(oex)?
@ log-normal if f(x) X\/Tnexp( >—) for x>0
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Typical laws
Inequalities

The classics Convergence

An art of inequalities (I)

Proposition (large deviations : an inequality about distribution tails)

Let h function from R to Ry such that h(X) remains a real r.v.,
then for all a>0, P(h(X)=a) < [E(th))_

A\

Corollary (Markov inequality)
For all a>0, P(X za) < [Elxl

A\

Corollary (Bienaymé-Tchebychev inequality)
For all a>0, P(IX —E(X)|=a) < Vafagx)_

A\

M1IF - ENS Lyon Performance Evaluation & Networks

25/32



Typical laws
Inequalities

The classics Convergence

An art of inequalities (I1)

Proposition (Jensen inequality)

Let h convex function from R to R and X real r.v. with E(X) < +oo,
then E(h(X)) = h(E(X)).

v

Proposition (Holder inequality)

Let p,g=1 real nbs such that % + % =1, then
EIXY| = (EIXP|)Y/P(E)X9))L/9.

Proposition (Minkowski inequality)
Let p=1 real nb, then [E(|X + YIP)]*/P < (EIXP|)Y/P + (E| YP|)'/P.
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Typical laws
Inequalities
The classics Convergence

An art of inequalities (I11)

Proposition (Chernoff inequality)

Let Xi,..., X, independent real r.v. with values in {0,1}, let
X=X",Xi and p=E(X), then for all § >0,

P(X > (1+8)1) = ()"

Proposition (Hoeffding inequality)

Let Xi,..., X, independent real v.a. a.s bounded with
P(Xi€lai,bi])=1for1<i<n, ie. X=(¥L7_, X;)/n their empirical
mean, then

P(IX ~E(X)| = t) = 2exp( - =257 )
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Typical laws
Inequalities
Convergence

The classics

Convergence modes

Let (Xn)nen, X real r.v. on the same probability space (Q, Z,P),

Definition (convergence in law / in distribution)

Xn Iﬂ» X if Vx pt of continuity of Fx, Fx (x) o Fx(x).
— 100

\

Definition (convergence in proba)

X, = X if ¥Ve>0, P(IX,—X|>€) — 0.

—+00

Definition (convergence almost sure)

Xo P22 X i P10 € QIXn(0) — X(w)))=1.

Remark : “same proba space” not necessary for cony. in law
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Typical laws
Inequalities

The classics Convergence

Comparison of convergences

Theorem (comparison of convergence modes)

Let (Xn)nen, X real r.v. on the same proba space (Q, F,P),
then : X, 25X = X,2X = Xx,2X

Beware of traps :

AXn 25X £ X2 X = X, 2 X
A Xy X A Xo-X 20

A Xp 22X % E(X,) — E(X)

A tip of integration :

e X,=0as. and X, < Xp41 a.s. = E(X,) — E(X)
e Vn, [X,l<Y as. and E|Y|<oo = E(X,) — E(X)
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Typical laws
Inequalities
Convergence

The classics

Convergences & recurrent events

Notation : let (A,)nen a sequence of events,
{A, oo often}d:ef fweQlwe A, for co many Apl = with U and N7

Theorem (CNS of convergence a.s.)

Xn 2% X iff Ve >0, P(1X, — X| = € 00 often) =0.

Theorem (Borel-Cantelli)

Let (An)nen @ sequence of events,
o IfY,P(A,) <oo, then P(A, co often) =0.
o IfY,P(Ap) =00 and A, independent, then P(A, oo often) =1.

<
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Typical laws
Inequalities
Convergence

The classics

Convergences & recurrent events

Notation : let (A,)nen a sequence of events,
{A, oo often} = fweQlwe Ay, for co many Apl = Nk Upsk An-

Theorem (CNS of convergence a.s.)

Xn 2% X iff Ve >0, P(1X, — X| = € 00 often) =0.

Theorem (Borel-Cantelli)
Let (An)nen @ sequence of events,
o IfY,P(An) <oo, then P(A, oo often) =0.
o IfY,P(A,) =00 and A, independent, then P(A, oo often) =1.

<
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Typical laws
Inequalities
Convergence

The classics

Limit theorems

@ (Xp)n>1 i.i.d. r.v.= defined on the same probability space,
independent, identically distributed (same law).

o Empirical mean Ygf%(X1+---+X,,).

Theorem (weak law of large numbers, simple proof when g3 < o0)

Let (Xp)n=1 i.i.d. where u=E(X1) finite, then X, L L.

Theorem (strong law of large numbers, simple proof when g4 < c0)

Let (Xpn)n=1 i.i.d. where u=E(X1) finite, then X, 22 .

Theorem (central limite theorem)
Let (Xp)n=1 i.i.d. where u=E(X1) and a? = var(Xy) finite, then
~ D
Y2 (X — ) = A (0,1).
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Typical laws
Inequalities
Convergence

The classics

lllustrations of convergence modes

Vocabulary : stochastic process : evolution of r.v. formalised by a
sequence (Xt)ten ou R, Of r.v. over the same space (Q,Z,P) — a
trajectory/réalisation : the sequence (X:(w)); for a fixed w € Q.

cv in law Cv a.s.
états

g E
CEN A g
RN AN 8
temps temps
global repartition of trajectories each trajectory converges
becomes invariant individually (a.s.)
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Typical laws
Inequalities

The classics Convergence

lllustrations of convergence modes

Vocabulary : stochastic process : evolution of r.v. formalised by a
sequence (Xt)ten ou R, Of r.v. over the same space (Q,Z,P) — a
trajectory/réalisation : the sequence (X:(w)): for a fixed w € Q.

cv in law cv a.s.
A états A états

) )
g =
g g
B B
temps temps

global repartition of trajectories each trajectory converges

becomes invariant individually (a.s.)
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